

Cambridge, England

www.ninetiles.com

Switching and routing

The image shows the “calling nine tiles” Mah-jongg hand.

Network layer

● the one part of the stack that's universal

routing

encapsulation

physical layers

applications

transport protocols

users

The “switching and routing” part of FN is layer 3 (the network layer)
in the OSI model; it carries data between end-systems along
routes that pass through switches. Like IP, it is a single protocol
which links the higher and lower layers in the stack.

There can be many different higher-layer protocols which use the
service it provides; in the current Internet these include TCP,
UDP, and RTP.

The route the data follows will usually pass through several
different network elements, which may use different lower-layer
technologies such as WiFi (IEEE 802.11), Ethernet (802.3),
ADSL, and SDH.

To aid migration, FN can use IP as a lower layer (carrying FN data
units over an IP network) and as an upper layer (carrying IP
datagrams across an FN infrastructure); it can also interface
directly to TCP and UDP, and to protocols that run over UDP.

● like ISO 668, 1161, ...

The pictures show another kind of global network in which
interoperability is assured by conformance to ISO standards.

The lower layers include lorry, train, and ship.
Containers convey many different kinds of freight, but are all

handled in the same way and the service they receive does not
depend on the contents.

At transshipment points, the container's identifier is looked up in a
data base to find where it needs to go next; the route will have
been planned beforehand.

Network layer

● links upper to lower layers
● should be the only communication between them
● communication should be explicit

– not DPI and guesswork

● IP puts all the information in the packet header
● adds to per-packet overhead
● refers to a single packet, not a flow
● wasteful if the same for every packet
● negotiation etc not easy (e.g. path MTU discovery)

The upper layers should not need to know which kinds of lower
layer the packets will pass across; thus the network layer needs
to provide a standardised way for the upper layers to exchange
information with the lower layers (switches and links) about the
service the packets should receive.

In current networks, deep packet inspection is often used by the
lower layers to find what is in a packet and from that to guess
what service it should receive. The information that can be
passed explicitly is limited to those items for which a field is
provided in the packet header; adding more fields would
increase per-packet overheads.

Often, the application will be sending a succession of packets (a
“flow”), and will need to pass information about the flow rather
than about individual packets.

Some of the information that takes up space in a packet header
may be redundant because it is always the same; RTP header
compression, which is used to overcome this problem, adds
complexity.

With IPv6, the maximum size of packet that can be transmitted
must be discovered by trial and error; the FN control protocols
will report it explicitly.

Two kinds of data

static dynamic

content files, web pages, etc audio, video, voice

context IT AV; real world

traffic bursty regular

service best effort needs QoS

IP designed for? yes no

The information carried by communications systems can be divided into two
classes.

One is static objects which are encoded as a bit string which needs to be
copied from one place to another. Examples are files and web pages.
When the requirement arises, the whole bit string is available to be
transmitted, and the task is complete when an exact copy of the whole
string has been received at the destination. The only timing requirement is
to complete the transfer as quickly as possible. Thus the data flow is
bursty and a best-effort service is appropriate.

The other is typified by signals that represent a time-varying physical
quantity that is being measured by a sensor, such as sound (from a
microphone) or video (from a camera). In this case the data will become
available in small amounts at regular intervals, and for many applications
the delay from when a piece of data is generated until it is available at the
receiving end must be kept within limits specified by the application. Thus
there needs to be an agreement between the application and the network
that the application will send packets at regular intervals and the network
will deliver them within a specified time. Rendering the data requires not
only the but string but also a good-quality clock.

Content-centric addressing is likely to be appropriate for static objects,
whereas for dynamic data, location will often be more relevant, for
instance when using CCTV to see whether there are traffic queues on a
particular road.

Two kinds of flow

 Synchronous
 appropriate for dynamic data
 one-to-many
 packets sent at regular intervals
 QoS guarantees (if supported by lower layers)

 Asynchronous
 appropriate for static data
 one-to-one or many-to-one
 best-effort service

Einstein said “Make everything as simple as possible, but not simpler.”
FN supports two kinds of flow. (ATM supported four.) Usually, both kinds will

be packet-switched, with synchronous packets having priority.
Synchronous flows can be scheduled in a way that means the packets do

not have to be put into queues; this makes it easy to copy a stream to
several outputs. It also makes traffic shaping and policing (ensuring a
sender does not exceed the capacity it has negotiated) easy.

The control protocols report the performance the network is able to achieve.
On a packet network that tightly synchronises synchronous flows the
performance will be close to that of an analogue network or an all-optical
network, while on an unmanaged IP network large delays and packet loss
may occur; the receiving application can configure buffering etc to match
the declared performance.

Packets on asynchronous flows are queued in the same way as on
connectionless networks, except that there is no need for multiple queues
per port because high-priority traffic can use synchronous flows.
Multicasting is also not supported, because it would increase complexity
and most requirements for it involve synchronous flows. However, the
routing table can be set up such that packets on several different
incoming flows are forwarded to the same outgoing flow; this is used for
the shared flows described on the slide titled “Fast set-up for
asynchronous”.

One service is not enough

● Service for one kind can be used for the other ...
● modem (including fax; data over a voice service)
● voice etc over IP

● … but is often sub-optimal
● wasted bandwidth on modem links
● latency and dropped packets with VoIP

● Need one system that offers two services
● need better latency for conversations
● IoT will need dynamic data for control loops

For some applications which send data of one kind, a service
intended for the other kind may meet the requirements, or may
be usable but offer poor quality, or may be unusable.

Thus data can be sent over the analogue voice telephone system,
but bandwidth will be wasted if there are periods when there is
nothing to send. Similarly, dynamic data can be sent over a best-
effort service but will suffer delays and lost packets.

Operators will prefer to have one system to maintain rather than
two, but the system needs to be able to satisfy all requirements.
Thus, Internet traffic was originally carried by modems over the
telephone network but, when the service provided became
inadequate for it, broadband networks were introduced. The
prospect of using the IP network for everything was attractive,
but in practice significant parts of the voice network have had to
be retained, for instance to support per-call charging.

Users have learnt to cope with the increasing delays on voice calls,
but for some applications (for instance in telemedicine, in live
broadcasting, and in videoconferencing) the service provided to
dynamic data on the current Internet is inadequate.

ATM would have been a single system offering both kinds of
service, but failed in the marketplace for other reasons.

Switch structure

controller (computer)

routing table

buffer
memory

inputs outputs

control
packets
 etc

logiclogiclogiclogic

scheduling

All switching technologies use a structure similar to this. The
routing table shows what should be done with each incoming
packet, based on information such as destination address or
virtual channel number. The “scheduling” may control how the
output logic chooses what to transmit.

Forwarding of packets is done by logic (hardware) which can run at
wire speed (i.e. keep up with the fastest rate at which packets
can be transmitted). More complex operations, such as
processing packets for control protocols, are done by software in
the controller; usually these operations are much slower than
wire speed.

With IP, packets whose destination is not in the routing table are
processed by the controller, also packets for protocols such as
ARP.

When memory and logic were expensive and data links were slow,
all packets were processed by the controller.

With ISDN, the D-channel (Q.931) data is passed to the controller.
With ATM (Asynchronous Transfer Mode), cells on VCIs 1 to 31 are

passed to the controller.

Signalling

● IP: connectionless
● routing information in packet header

– includes IPv4 or IPv6 address
● packets with no table entry passed to controller
● data waits while controller decides route

– e.g. during ARP transaction

controller

routing table

bufferin out

ctl
pkts scheduling

In IP networks, there is no “set-up” process before packets are
transmitted; it is only when a packet arrives with a destination
address which is not in the routing table that the controller
process which fills in the routing table entry is invoked. The
packet is therefore held in a buffer until that process, which may
require exchange of protocol packets with other network
elements, is complete.

Signalling

● FN: separate protocol to set up route
● address in control message, not in packet

– allows new forms of addressing to be used
– allows different forms of routing technology to be used

● routing table entry written before data sent
– data packets never need to wait for controller

controller

routing table

bufferin out

ctl
pkts scheduling

With FN, the information needed to route a flow is in a control
message. It includes the destination address, which may take a
variety of forms including names such as URIs. It also includes
QoS parameters and information about the data format, and can
include other information such as for per-call charging. Thus it
combines the functions of a number of protocols in IP networks
(such as DNS, SIP, SDP, and RSVP) as well as others which will
be needed if the network is to provide all telecommunications
services within a single system.

Connection-oriented paradigm

● Allows QoS etc negotiation
● and other facilities such as per-call billing

● Connection-oriented ≠ TDM
● though FN supports use of TDM and WDM circuits

● “Link” between network elements may be:
● point-to-point connection or shared media (e.g. WiFi)
● legacy (sub-)network, including connectionless

● Label switching more efficient
● less logic in switches → lower power

As part of the process of setting up a route, the application can co-
operate with the network to find the best bit rate to use, and the
network can inform the application of other parameters such as
latency. The endpoints can also use this same process to agree the
coding to be used, and authentication can be done at this stage.

The model also supports per-call billing as in telephone networks. This
can be used to remunerate content owners without needing the user
to make direct payments to them, as with premium-rate telephone
calls. It can also allow different levels of service to be offered, for
instance a higher price for better-quality video.

FN is expected to be packet-switched. However, where appropriate the
network may offer to, for example, connect a WDM lambda over
fibre; this may be switched in the optical domain, which would be
significantly more efficient than packet switching which currently has
to be done in the electronic domain.

A link between units in FN can be a network using legacy technology.
This provides a migration path by tunnelling FN calls across existing
networks.

Where links are new technology, the routing information in the packet
header can simply be a “label” which is the address in the routing
table of the entry for the flow; this entry can simply contain the output
port number and the label to use for the next hop.

Addressing

● Example: access to a service by name
● IP: use DNS to find IP address

– IP address is then used for packet routing
– problems with mobility etc

● FN: put service name in control message
– reply includes a value which identifies the route

● format depends on the link technology for the first hop

– client does not need to know location of server
● each network element only needs to know local part of route

– rerouting, handover, etc are transparent

With current networks, DNS can be used to find the IP address of
an interface to a piece of equipment which provides the required
service, or has a copy of the required data. Subsequent
communication is therefore tied to that interface, even if the
device has other interfaces which are less heavily loaded; and
additional protocols are required to support handover if the
destination is a mobile device.

With FN, the application simply uses the name as the called
address in the control packet that requests connection set-up.
The reply shows what value needs to be put in the packet
headers, but this value only needs to identify the route to the
local switch. Handover of mobile devices is, again, handled
locally, without affecting the rest of the route.

Fast set-up for asynchronous

● Synchronous flows require negotiation
● FN must not be slower than IP for web browsing

● HTTP typically uses many short TCP sessions
● addresses already in routing table after the first

– for popular web sites, destination is there even for first
● return route cached as SYN packet forwarded

● FN has equivalent for connection-oriented
● connection to server is many-to-one
● return route set-up does not involve controller

One criticism that has been made of connection-oriented
communications is the time required to set up a call. Partly that has
been because systems were poorly implemented, but there are
some use cases in which many sessions are set up and torn down,
and an action that requires intervention from the controller will
always take longer (though not necessarily significantly longer) than
one that can be done by the logic.

In the case of synchronous flows, the negotiation and resource
allocation which are part of call set-up are necessary and the length
of time they take is not likely to have a significant adverse effect on
the user experience.

Sending a packet to a new destination address on an IP network
requires a similar process to setting up the route for an
asynchronous flow on a connection-oriented network. Thereafter,
however, the route will be cached in the IP network's routing tables
so subsequent packets do not require intervention from the
controller. The route remains in the tables after the TCP session is
terminated, and so can be used for subsequent sessions; it can also
be used by other clients.

The mechanism outlined in 8.2 of 29181-3 (see link on last slide) allows
connection-oriented networks to cache routes, and share them, in
the same way.

Finding a route (1)

● Application sends request to local controller
● includes address (or other identification) of target

– which may be service or content
● also includes globally-unique “call identifier”

● Multiple addressing schemes
● must support legacy schemes, e.g. IPv4, IPv6

– including URLs etc
● must allow new schemes to be added later

– no change to routing logic required

Connection of a call begins with the application building a request
message and sending it to the controller of the switch to which
the unit running the application is connected. This message (and
its reply) will carry information for (and from) both the network
and the remote application. The information exchanged with the
network can include traffic parameters (such as: whether
synchronous or asynchronous data; packet size; rate and
latency if synchronous) and authentication and billing
information. The information exchanged with the remote
application can include identification of formats and protocols,
and user authentication.

Each call has a unique identifier which has global scope. This
allows loops in the route to be detected and is also useful for
network management.

The messages are processed by software in the switch controllers,
so it is easy to support multiple addressing schemes. Supporting
legacy schemes such as IPv4 will aid migration. Supporting
URLs will remove the need for end systems to use DNS. New
addressing schemes can be added to support future
requirements without needing to update the logic in switches
(unlike the change from IPv4 to IPv6).

Finding a route (2)

● Controller in each switch decides next hop
● topology discovery depends on the address scheme
● may simply flood request to all neighbours

– loops easy to detect
– not scalable to large networks

● controller checks required capacity is available
– provided the switching technology supports it

● Labelling of packets depends on link technology
● route may pass over several different technologies

The controller software looks at the destination address (and maybe other
information) in the message and forwards the message to one or more
neighbours that are in some sense “nearer” to the destination. How it
knows which is “nearer” will usually depend on the address scheme and
the provision it includes for distributing topology information, though in
some subnetworks there will be a “gateway” through which all requests
for non-local addresses can be routed.

In small networks, connection requests can simply be flooded to all
neighbours; a switch can easily detect loops by comparing the call
identifier with existing routes passing through it, so there is no need for a
“spanning tree” protocol to disable links.

When a request for a synchronous flow is forwarded, resource is reserved
for it (but not at that stage set up in the routing tables). Where there is a
choice of routes, the most lightly loaded can be chosen. However, this is
not possible if the underlying network does not support resource
reservation, in which case the reply will show that no performance
guarantees are possible.

The information in the encapsulation of a packet that is used by the logic to
decide where to forward it depends on the link technology. For instance,
on an Ethernet subnetwork it will be the 48-bit MAC address of the
neighbouring switch together with an additional field selecting an entry in
the neighbour's routing table. This is similar to the way that IP packets are
forwarded inside Ethernet packets.

Control protocol

● Tag-length-value format
● like Q.931, Q.2931; unlike SIP
● suitable for small embedded processors

– no interpretation of character strings required
– appropriate for Internet of Things

● easy to skip unrecognised / uninteresting items
– some parts for network, some for remote application

● Could be based on IEC 62379-5-2

29181-3 lists requirements for the control messages.
One is that the format should be suitable for parsing by small

processors, to minimise the processing power required in simple
devices. The format should also make it easy to skip parts of the
message that are not recognised (perhaps because they have
been standardised since the software was last updated) or are
not of interest (in the case of a switch, this would include
information intended for the remote application). The messages
do not need to be directly human-readable, though it should be
easy to expand them into a text form for use in diagnostic
messages.

The tag-length-value format used in ITU-T signalling and many
other protocols would be suitable; the text form used in SIP
would not.

IEC PT 62379 is developing (in its Part 5-2) a protocol which meets
these requirements; a link to the drafts is on the next slide.

● http://www.iec62379.org/FN-standardisation.html
● includes link to current draft of 29181-3
● also links to IEC 62379-5 drafts

http://www.ninetiles.com

mailto:j@ninetiles.com

Links to drafts

